Active Multi-Field Learning for Spam Filtering
نویسندگان
چکیده
Ubiquitous spam messages cause a serious waste of time and resources. This paper addresses the practical spam filtering problem, and proposes a universal approach to fight with various spam messages. The proposed active multi-field learning approach is based on: 1) It is cost-sensitive to obtain a label for a realworld spam filter, which suggests an active learning idea; and 2) Different messages often have a similar multi-field text structure, which suggests a multi-field learning idea. The multi-field learning framework combines multiple results predicted from field classifiers by a novel compound weight, and each field classifier calculates the arithmetical average of multiple conditional probabilities predicted from feature strings according to a data structure of string-frequency index. Comparing the current variance of field classifying results with the historical variance, the active learner evaluates the classifying confidence and regards the more uncertain message as the more informative sample for which to request a label. The experimental results show that the proposed approach can achieve the state-of-the-art performance at greatly reduced label requirements both in email spam filtering and short text spam filtering. Our active multi-field learning performance, the standard (1-ROCA) % measurement, even exceeds the full feedback performance of some advanced individual classifying algorithm.
منابع مشابه
Online Active Learning Methods for Fast Label-Efficient Spam Filtering
Active learning methods seek to reduce the number of labeled examples needed to train an effective classifier, and have natural appeal in spam filtering applications where trustworthy labels for messages may be costly to acquire. Past investigations of active learning in spam filtering have focused on the pool-based scenario, where there is assumed to be a large, unlabeled data set and the goal...
متن کاملSpamCooling: A Parallel Heterogeneous Ensemble Spam Filtering System Based on Active Learning Techniques
Anti-spam technology is developing rapidly in recent years. With the emerging applications of machine learning in diverse fields, researchers as well as manufacturers around the world have attempted a large number of related algorithms to prevent spam. In this paper, we designed an effective anti-spam protection system, SpamCooling, based on the mechanism of active learning and parallel heterog...
متن کاملA Machine Learning Approach to Server-side
Spam-detection systems based on traditional methods have several obvious disadvantages like low detection rate, necessity of regular knowledge bases’ updates, impersonal filtering rules. New intelligent methods for spam detection, which use statistical and machine learning algorithms, solve these problems successfully. But these methods are not widespread in spam filtering for enterprise-level ...
متن کاملAdvances in Online Learning-based Spam Filtering
The low cost of digital communication has given rise to the problem of email spam, which is unwanted, harmful, or abusive electronic content. In this thesis, we present several advances in the application of online machine learning methods for automatically filtering spam. We detail a sliding-window variant of Support Vector Machines that yields state of the art results for the standard online ...
متن کاملActive Learning Image Spam Hunter
Image spam is annoying email users around the world. Most previous work for image spam detection focuses on supervised learning approaches. However, it is costly to get enough trustworthy labels for learning, especially for an adversarial problem where spammers constantly modify patterns to evade the classifier. To address this issue, we employ the principle of active learning where the learner...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computing and Informatics
دوره 33 شماره
صفحات -
تاریخ انتشار 2014